0-0-0

000

GEN-2013-029 Impact Restudy for Generator Modification (Turbine Change)

January 2016 Generator Interconnection

Revision History

Date	Author	Change Description
9/2/2015	SPP	GEN-2013-029 Impact Restudy for Generator Modification (Turbine Change) issued.
1/21/2016	SPP	Revised document to read Siemens SWT 2.3MW instead of Siemens 2.0MW VS

Executive Summary

The GEN-2013-029 Interconnection Customer has requested a modification to its Generator Interconnection Request to change from a combination of sixty-six (66) GE 1.7MW wind turbine generators (aggregate power of 148.0MW) and seventy-four (74) Vestas V100 2.0MW wind turbine generators (aggregate power of 151.8MW for a total generation facility power of 299.8MW) to one hundred thirty (130) Siemens SWT 2.3MW wind turbine generators (aggregate power of 299.0MW). The point of interconnection (POI) is the Oklahoma Gas and Electric (OKGE) Renfrow 345kV substation.

The study models used were the 2015 summer, the 2015 winter, and the 2025 summer cases and included Interconnection Requests through DISIS-2015-001. The restudy showed that no stability problems were found with the contingencies studied during the summer and the winter peak conditions as a result of changing to the Siemens SWT 2.3MW wind turbine generators. Additionally, the project wind farm was found to stay connected during the contingencies that were studied and, therefore, will meet the Low Voltage Ride Through (LVRT) requirements of FERC Order #661A.

A power factor analysis was performed and GEN-2013-029 will be required to meet the 0.95 power factor lagging (providing vars) to 0.95 power factor leading (absorbing vars) at the POI. A short circuit analysis was performed and has been included in this report.

A low-wind/no-wind condition analysis was performed for this modification request. The project will be required to install approximately 17 Mvars of shunt reactors on its substation 34.5kV bus(es). This is necessary to offset the capacitive effect on the transmission network caused by the project's transmission line and collector system during low-wind/no-wind conditions.

With the assumptions outlined in this report and with all required network upgrades in place, GEN-2013-029 with the Siemens SWT 2.3MW wind turbine generators should be able to reliably interconnect to the SPP transmission grid.

It should be noted that this study analyzed the requested modification to change generator technology, manufacturer, and layout. This study analyzed many of the most probable contingencies, but it is not an all-inclusive list and cannot account for every operational situation. It is likely that the customer may be required to reduce its generation output to 0 MW, also known as curtailment, under certain system conditions to allow system operators to maintain the reliability of the transmission network.

Nothing in this study should be construed as a guarantee of transmission service. If the Customer wishes to obtain deliverability to a specific customer, a separate request for transmission service shall be requested on Southwest Power Pool's OASIS.

Table of Contents

Revisio	on Historyi
Execut	ive Summary ii
Table	of Contents iii
1.	Introduction1
2.	Facilities4
	Generating Facility4
3.	Stability Analysis
	Model Preparation5
	Disturbances5
	Results
	FERC LVRT Compliance
4.	Power Factor Analysis 10
5.	Reduced Generation Analysis 11
	Model Preparation
	Results11
6.	Short Circuit Analysis 12
7.	Conclusion
APPEN	IDIX A: PLOTS
APPEN	DIX B: POWER FACTOR ANALYSIS 15
APPEN	DIX C: REDUCED GENERATION ANALYSIS 19
APPEN	DIX D: SHORT CIRCUIT ANALYSIS 22

1. Introduction

The GEN-2013-029 Interconnection Customer has requested a modification to its Generator Interconnection Request to change from a combination of sixty-six (66) GE 1.7MW wind turbine generators (aggregate power of 148.0MW) and seventy-four (74) Vestas V100 2.0MW wind turbine generators (aggregate power of 151.8MW for a total generation facility power of 299.8MW) to one hundred thirty (130) Siemens SWT 2.3MW wind turbine generators (aggregate power of 299.0MW). The point of interconnection (POI) is the Oklahoma Gas and Electric (OKGE) Renfrow 345kV substation. Table 1-1 shows the interconnection request.

Table 1-1: Interconnection Request

Request	Capacity (MW)	Generator Model	Point of Interconnection
GEN-2013-029	299.0	Siemens SWT 2.3MW	OKGE Renfrow 345kV Substation

The prior-queued, equally-queued and lower queued requests shown in Table 1-2 were included in this study and the wind farms were dispatched to 100% of rated capacity.

Request	Capacity (MW)	Generator Model	Point of Interconnection
GEN-2002-004	199.5	GE.1.5MW	Latham 345kV (532800)
GEN-2005-013	199.8	Vestas V90 1.8MW	Caney River 345kV (532780)
GEN-2007-025	299.2	GE 1.6MW	Viola 345kV (532798)
GEN-2008-013	299.04	GE 1.68MW	Hunter 345kV (515476)
GEN-2008-021	1283	GENROU	Wolf Creek 345kV (532797)
GEN-2008-098	100.0	Gamesa G114 2.0MW	Tap on the Wolf Creek – LaCygne 345kV line (Waverly 345kV, 532799)
GEN-2009-025	59.8	Siemens 2.3MW	Tap on the Deerck – Sincblk 69KV line (515528)
GEN-2010-003	100.0	Gamesa G114 2.0MW	Tap on the Wolf Creek – LaCygne 345kV line (Waverly 345kV, 532799)
GEN-2010-005	299.2	GE 1.6MW	Viola 345kV (532798)
ASGI-2010-006	150	GE1.5MW	Remington 138kV (301369)
GEN-2010-055	4.8	GENROU	Wekiwa 138kV (509757)
GEN-2011-057	150.0	Vestas V110 2.0MW	Creswell 138kV (532981)
GEN-2012-027	150.7	GE 1.62MW	Shidler 138kV (510403)
GEN-2012-032	299	Siemens 2.3MW	Tap Rose Hill-Sooner 345kV (562318)
GEN-2012-033	98.8	GE 1.62MW	Tap Bunch Creek-South 4th 138kV(562303)
GEN-2012-040	76.5	GE 1.7MW	Chilocco 138kV (521198)

Table 1-2: Prior and Later Queued Interconnection Requests

Request Capacity (MW)		Generator Model	Point of Interconnection	
GEN-2012-041	85 Summer 121.5 Winter	GENROU	Tap Rose Hill-Sooner 345kV (562318)	
GEN-2013-012	4 x 168.0MW Summer 4 x 215MW Winter	GENROU (514910) (514911) (514912) (514942)	Redbud 345kV (514909)	
GEN-2013-028	516.4 Summer 559.5 Winter	GENROU (583743, 583746)	Tap on Tulsa N to GRDA1 345kV (562423)	
GEN-2013-029	300	Vestas V100 VCSS 2MW (583753, 583756)	Renfrow 345kV(515543)	
GEN-2014-001	200.6	GE 1.7MW 100m (583853,583856)	Tap Wichita to Emporia Energy Center 345kV (562476)	
GEN-2014-028	35 (Uprate) (Pgen=259W /256S)	GENROU	Riverton 161kV (547469)	
GEN-2014-064	248.4	GE 2.3MW	Otter 138kV (514708)	
ASGI-2014-014	56.4W/54.3S	GENROU	Ferguson 69kV (512664)	
GEN-2015-015	154.6	Siemens 2.3MW with Power Boost (115kW => 2.415MW)	Tap Medford Tap – Coyote 138kV	
GEN-2015-016	200.0	Vestas V110 2.0MW	Tap Centerville – Marmaton 161kV	
GEN-2015-024	220.0	GE 2.0MW	Tap on Thistle to Wichita 345kV, ckt1&2 (560033)	
GEN-2015-025	220.0	GE 2.0MW	Tap on Thistle to Wichita 345kV, ckt1&2 (560033)	
GEN-2015-028	3.0 uprate to GEN-2009- 025 for total 62.8MW	Siemens 2.3MW with Power Boost (115kW => 2.415MW)	Nardins 69kV	
GEN-2015-030	200.1	GE 2.3MW	Sooner 345kV	
ASGI-2015-004	54.300 Summer 56.364 Winter	GENSAL	Coffeyville Municipal Light & Power Northern Industrial Park Substation 69kV (512735)	

Table 1-2: Prior and Later Queued Interconnection Requests

The study included a stability analysis of the interconnection request. Contingencies that resulted in a prior-queued project tripping off-line, if any, were re-run with the prior-queued project's voltage and frequency tripping relays disabled. Also a low-wind/no-wind analysis was performed on this project since it is a wind farm. The analyses were performed on three seasonal models, the modified versions of the 2015 summer peak, the 2015 winter peak, and the 2025 summer peak cases. The models included Interconnection Requests through DISIS-2015-001.

The stability analysis determines the impacts of the new interconnecting project on the stability and voltage recovery of the nearby systems and the ability of the interconnecting project to meet FERC Order 661A. If problems with stability or voltage recovery are identified, the need for reactive compensation or system upgrades is investigated. The three-phase faults and the single line-to-ground faults listed in Table 3-1 were used in the stability analysis. A power factor analysis at the POI was performed and a short circuit analysis was performed on busses up to five levels away from the POI.

The low-wind/no-wind analysis determines the capacitive effect at the POI caused by the project's collector system and transmission line capacitance. A shunt reactor size was determined to offset the capacitive effect and to maintain approximately zero Mvar flow at the POI when the plant generators and capacitors are off-line such as might be seen in low-wind or no-wind conditions.

Nothing in this study constitutes a request for transmission service or grants the Interconnection Customer any rights to transmission service.

2. Facilities

Generating Facility

The point of interconnection (POI) for the GEN-2013-029 interconnection request is the Oklahoma Gas and Gas and Electric (OKGE) Renfrow 230kV substation.

Figure 2-1 depicts the one-line diagram of the POI and the power flow model representing the request.

Southwest Power Pool, Inc.

Figure 2-1: Proposed POI and Power Flow Model for GEN-2013-029

Facilities

3. Stability Analysis

Transient stability analysis is used to determine if the transmission system can maintain angular stability and ensure bus voltages stay within planning criteria bandwidth during and after a disturbance while considering the addition of a generator interconnection request.

Model Preparation

Transient stability analysis was performed using modified versions of the 2014 series of Model Development Working Group (MDWG) dynamic study models including the 2015 summer peak, the 2015 winter peak, and the 2025 summer peak seasonal models. The cases are then loaded with prior queued interconnection requests and network upgrades assigned to those interconnection requests. Finally the prior queued and study generation are dispatched into the SPP footprint. Initial simulations are then carried out for a no-disturbance run of twenty (20) seconds to verify the numerical stability of the model.

Disturbances

Twenty-one (21) contingencies were identified for use in this study and are listed in Table 3-1. These contingencies included three-phase faults and single-phase line faults at locations defined by SPP. Single-phase line faults were simulated by applying fault impedance to the positive sequence network at the fault location to represent the effect of the negative and zero sequence networks on the positive sequence network. The fault impedance was computed to give a positive sequence voltage at the specified fault location of approximately 60% of pre-fault voltage. This method is in agreement with SPP current practice.

Except for transformer faults, the typical sequence of events for a three-phase and a single-phase fault is as follows:

- 1. apply fault at particular location
- 2. continue fault for five (5) cycles, clear the fault by tripping the faulted facility
- 3. after an additional twenty (20) cycles, re-close the previous facility back into the fault
- 4. continue fault for five (5) additional cycles
- 5. trip the faulted facility and remove the fault

Transformer faults are typically modeled as three-phase faults, unless otherwise noted. The sequence of events for a transformer fault is as follows:

- 1. apply fault for five (5) cycles
- 2. clear the fault by tripping the affected transformer facility (unless otherwise noted there will be no re-closing into a transformer fault)

Cont.	Contingency	Description		
No.	Name	Description		
1 FLT01-3PH		 3 phase fault on the Renfrow (515543) to Hunter (515476) 345kV line, near Renfrow. a. Apply fault at the Renfrow 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. 		
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.		
2	FLT02-3PH	 a. Apply fault at the Renfro 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 		
3	FLT03-3PH	 3 phase fault on the Viola (532798) to Wichita (532796) 345kV line, near Viola. a. Apply fault at the Viola 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 		
4	FLT04-3PH	 3 phase fault on the Wichita (532796) to Benton (532791) 345kV line, near Wichita. a. Apply fault at the Wichita 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 		
5	FLT05-3PH	 3 phase fault on the Wichita (532796) to G14-001 Tap (562476) 345kV line, near Wichita. a. Apply fault at the Wichita 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 		
6	FLT06-3PH	 3 phase fault on the Emporia EC (562476) to G14-001 Tap (562476) 345kV line, near G14-001. a. Apply fault at the G14-001 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 		
7	FLT07-3PH	 3 phase fault on the Wichita (532796) to G1524&G1525T (560033) 345kV line circuit 1, near Wichita. a. Apply fault at the Wichita 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. 		
8	FLT08-3PH (2025SP Only)	 3 phase fault on the Viola (532798) 345/(533075) 138/(532832) 13.8kV transformer, near Viola 345. a. Apply fault at the Viola 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. 		
9	FLT09-3PH	 3 phase fault on the Renfrow (515543) 345/(515544) 138/(515545) 13.8kV transformer, near Renfrow 345. a. Apply fault at the Renfrow 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. 		

Table 3-1: Contingencies Evaluated

Cont.	Contingency	Description
No.	Name	2 phase fault on the Bone (E22771) to Michita (E22706) 24EW/ size it 1
		3 phase fault on the Reno (532771) to Wichita (532796) 345KV circuit 1
		a Apply fault at the Wichita $345kV$ hus
10	FLT10-3PH	b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
		Prior outage on the Caney River (532780) – Neosho (532780)
		345kV line
		3 phase fault on the Wichita (532796) to Benton (532791) 345kV line,
11	FLT11PO-3PH	near Wichita.
		a. Apply fault at the Wichita 345KV bus.
		D. Clear fault after 5 cycles by tripping the faulted line.
		d Leave fault on for 5 cycles, then trin the line in (b) back into the fault.
		Prior outage on the Renfrow (515543) 345/ (515544) 138/
		(515545) 13.8kV transformer
		3 phase fault on the Renfrow (515543) to Viola (532798) 345kV line, near
12		Renfrow.
12	FLI12PO-SPH	a. Apply fault at the Renfrow 345kV bus.
		b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
		Prior outage on the Renfrow (515543) 345/ (515544) 138/
		(515545) 13.8kV transformer
		3 phase fault on the Renfrow (515543) to Hunter (515476) 345kV line,
13	FLT13PO-3PH	Apply fault at the Penfrow 345kV bus
		b. Clear fault after 5 cycles by trinning the faulted line
		c Wait 20 cycles and then re-close the line in (h) back into the fault
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
		Prior outage on the Renfrow (515543) 345/ (515544) 138/
	ГІ Т14РО-ЗРН	(515545) 13.8kV transformer
		3 phase fault on the Viola (532798) to Wichita (532798) 345kV line, near
14		Viola.
		a. Apply fault at the Viola 345kV bus.
		b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
		Prior outage on the Wichita (532/96) – Benton (532/91) 345kV
		3 phase fault on the Hunter (515476) to Woodring (514715) 345kV line
		near Hunter
15	FLT15PO-3PH	a. Apply fault at the Hunter 345kV bus.
		b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.

Table 3-1: Contingencies Evaluated

45kV
345kV Ilt. ault.
45kV
, near Ilt. ault.
)33)
5kV
/ line, Ilt. ault.
3.8kV ove the
3.8kV nove

Results

The stability analysis was performed and the results are summarized in Table 3-2. Based on the stability results and with all network upgrades in service, GEN-2013-029 did not cause any stability

problems and remained stable for all faults studied. No generators tripped or went unstable, and voltages recovered to acceptable levels.

Complete sets of plots for the stability analysis are available on request.

Contingency Number and Name		2015SP	2015WP	2025SP
1	FLT01-3PH	Stable	Stable	Stable
2	FLT02-3PH	Stable	Stable	Stable
3	FLT03-3PH	Stable	Stable	Stable
4	FLT04-3PH	Stable	Stable	Stable
5	FLT05-3PH	Stable	Stable	Stable
6	FLT06-3PH	Stable	Stable	Stable
7	FLT07-3PH	Stable	Stable	Stable
8	FLT08-3PH	NA	NA	Stable
9	FLT09-3PH	Stable	Stable	Stable
10	FLT10-3PH	Stable	Stable	Stable
11	FLT11PO-3PH	Stable	Stable	Stable
12	FLT12PO-3PH	Stable	Stable	Stable
13	FLT13PO-3PH	Stable	Stable	Stable
14	FLT14PO-3PH	Stable	Stable	Stable
15	FLT15PO-3PH	Stable	Stable	Stable
16	FLT16PO-3PH	Stable	Stable	Stable
17	FLT17PO-3PH	Stable	Stable	Stable
18	FLT18PO-3PH	Stable	Stable	Stable
19	FLT19PO-3PH	Stable	Stable	Stable
20	FLT20SB-1PH	Stable	Stable	Stable
21	FLT21SB-1PH	Stable	Stable	Stable

Table 3-2: Stability Analysis Results

NOTE: "NA" means the contingency is not applicable

FERC LVRT Compliance

FERC Order #661A places specific requirements on wind farms through its Low Voltage Ride Through (LVRT) provisions. For Interconnection Agreements signed after December 31, 2006, wind farms shall stay on line for faults at the POI that draw the voltage down at the POI to 0.0 pu.

Contingencies 1 and 2 in Table 3-2 simulated the LVRT contingencies. GEN-2013-029 met the LVRT requirements by staying on line and the transmission system remaining stable.

4. Power Factor Analysis

A power factor analysis was performed for this change request. The results are listed in the tables shown in **Appendix B: Power Factor Analysis**. The final power factor requirement for GEN-2013-029 will be the pro-forma 95% lagging to 95% leading at the POI.

5. Reduced Generation Analysis

Interconnection requests for wind generation projects that interconnect to a 345kV or 230kV bus on the SPP system are analyzed for the capacitive charging effects during reduced generation conditions (due to unsuitable wind speeds, curtailment, etc.) at the generation site

Model Preparation

The project generators and capacitors (if any), and all other wind projects that share the same POI, were turned off in the base case. The resulting reactive power injection into the transmission network comes from the capacitance of the project's transmission lines and collector cables. This reactive power injection is measured at the POI. Shunt reactors were added at the study project substation low voltage bus to bring the Mvar flow into the POI down to approximately zero.

Results

A final shunt reactor requirement for each of the studied interconnection requests is shown in **Table 5-1**. One line drawings used in the analysis are shown in Error! Reference source not found..

Table 5-1: Summary of Shunt Reactor Requirements

Request	Capacity	POI	Approximate Shunt Reactor Required
GEN-2013-029	299.0MW	OKGE Renfrow 345kV Substation	17 Mvar

The results shown are for the 2025 summer case. The other two cases (2015 summer and 2015 winter) were almost identical since the generation plant design is the same in all cases.

6. Short Circuit Analysis

The short circuit analysis was performed on the 2025 Summer Peak power flow case using the PSS/E ASCC program. Since the power flow model does not contain negative and zero sequence data, only three-phase symmetrical fault current levels were calculated at the point of interconnection up to and including five levels away. **Appendix D: Short Circuit Analysis** contains as listing of the short circuit currents.

7. Conclusion

The SPP GEN-2013-029 Impact Restudy evaluated the impact of interconnecting the project shown below in Table 7-1.

 Table 7-1: Interconnection Request

Request	Capacity (MW)	Generator Model	Point of Interconnection
GEN-2013-029	299.0	Siemens SWT 2.3MW	OKGE Renfrow 345kV Substation

With all Base Case Network Upgrades in service, previously assigned Network Upgrades in service, and required capacitor banks in service, the GEN-2013-029 project was found to remain on line, and the transmission system was found to remain stable for all conditions studied.

A low-wind/no-wind condition analysis was performed for this modification request. The project will be required to install a total of approximately 17Mvar of reactor shunts on its substation 34.5kV buses. This is necessary to offset the capacitive effect on the transmission network cause by the project's transmission line and collector system during low-wind or no-wind conditions.

A power factor analysis was performed for this study. GEN-2013-029 will be required to meet 0.95 power factor lagging (providing vars) to 0.95 power factor leading (absorbing vars) at the POI.

Low Voltage Ride Through (LVRT) analysis showed the study generators did not trip offline due to low voltage when all Network Upgrades are in service.

All generators in the monitored areas remained stable for all of the modeled disturbances.

Any changes to the assumptions made in this study, for example, one or more of the previously queued requests withdraw, may require a re-study at the expense of the Customer.

Nothing in this System Impact Study constitutes a request for transmission service or confers upon the Interconnection Customer any right to receive transmission service.

APPENDIX A: PLOTS

Available on request

APPENDIX B: POWER FACTOR ANALYSIS

A Power Factor Analysis was performed and the results are shown in Tables B-1 through B-3. Only three phase N-1 and single phase stuck breaker contingencies were evaluated. GEN-2013-029 will be required to meet 0.95 power factor lagging (providing vars) to 0.95 power factor leading (absorbing vars) at the POI.

GEN-2013-029 Turbine Restudy POI - RENFROW7 345.00 347.900665283 (515543)		2015 Summer Voltage = 1.00840771198 pu			
Cont.	Contingency Name	Power	VARS	Power Fac	tor
No.		at POI	at POI		
0	FLT_00_NoFault	499	-8.97376	0.999838	LEAD
1	FLT_01_Renfrow_Hunter_345kV	499	19.71913	0.99922	LAG
2	FLT_02_Renfrow_Viola_345kV	499	-23.7018	0.998874	LEAD
3	FLT_03_Viola_Wichita_345kV	499	146.7896	0.959353	LAG
4	FLT_04_Wichita_Benton_345kV	499	12.37986	0.999692	LAG
5	FLT_05_Wichita_G14001Tap_345kV	499	-1.61779	0.999995	LEAD
6	FLT_06_EmporiaEC_G14001Tap_345kV	499	0.474253	1	LAG
7	FLT_07_Wichita_G1524&G1525T_345kV	499	-5.66225	0.999936	LEAD
8	FLT_08_Viola_Viola_345_138kV	499	-8.97376	0.999838	LEAD
9	FLT_09_Renfrow_Renfrow_345_138kV 499 3.08956 0.99				LAG
10	FLT_10_Reno_Wichita_345kV	499	-0.86868	0.999998	LEAD
20	FLT_20SB_Renfrow_Renfrow_345_138kV	499	3.08956	0.999981	LAG
21	FLT_21SB_Renfrow_Renfrow_345_138kV	499	3.08956	0.999981	LAG

Table B-1: Power Factor Analysis – 2015 Summer

GEN-2013-029 Turbine Restudy POI - RENFROW7 345.00 345.0 (515543)		2015 Winter Voltage = 1.0 pu			
Cont.	Contingency Name	Power	VARS	Power Fac	tor
No.		at POI	at POI		
0	FLT_00_NoFault	499	64.46638	0.991758	LAG
1	FLT_01_Renfrow_Hunter_345kV	499	118.8634	0.972783	LAG
2	FLT_02_Renfrow_Viola_345kV	499	-55.1761	0.993942	LEAD
3	FLT_03_Viola_Wichita_345kV	499	245.4126	0.897348	LAG
4	FLT_04_Wichita_Benton_345kV	499	67.99586	0.990843	LAG
5	FLT_05_Wichita_G14001Tap_345kV	499	73.7998	0.98924	LAG
6	FLT_06_EmporiaEC_G14001Tap_345kV	499	76.65858	0.988405	LAG
7	FLT_07_Wichita_G1524&G1525T_345kV	499	69.09211	0.99055	LAG
8	FLT_08_Viola_Viola_345_138kV	499	64.46638	0.991758	LAG
9	FLT_09_Renfrow_Renfrow_345_138kV	499	83.21606	0.986378	LAG
10	FLT_10_Reno_Wichita_345kV	499	78.30004	0.987912	LAG
20	FLT_20SB_Renfrow_Renfrow_345_138kV	499	83.21606	0.986378	LAG
21	FLT_21SB_Renfrow_Renfrow_345_138kV	499	83.21606	0.986378	LAG

Table B-2: Power Factor Analysis – 2015 Winter

GEN-2013-029 Turbine Restudy POI - RENFROW7 345.00 348.098022461 (515543)		2025 Summer Voltage = 1.00897979736 pu			
Cont.	Contingency Name	Power	VARS	Power Factor	
No.		at POI	at POI		
0	FLT_00_NoFault	499	-17.5709	0.999381	LEAD
1	FLT_01_Renfrow_Hunter_345kV	499	13.05111	0.999658	LAG
2	FLT_02_Renfrow_Viola_345kV	499	-16.1671	0.999476	LEAD
3	FLT_03_Viola_Wichita_345kV	499	47.08953	0.995577	LAG
4	FLT_04_Wichita_Benton_345kV	499	-11.4202	0.999738	LEAD
5	FLT_05_Wichita_G14001Tap_345kV	499	-11.7141	0.999725	LEAD
6	FLT_06_EmporiaEC_G14001Tap_345kV	499	-10.6629	0.999772	LEAD
7	FLT_07_Wichita_G1524&G1525T_345kV	499	-14.7253	0.999565	LEAD
8	FLT_08_Viola_Viola_345_138kV 499 -14.0109 0.9				LEAD
9	FLT_09_Renfrow_Renfrow_345_138kV 499 -24.1604 0.99883				LEAD
10	FLT_10_Reno_Wichita_345kV	499	-2.13005	0.999991	LEAD
20	FLT_20SB_Renfrow_Renfrow_345_138kV	499	-24.1604	0.99883	LEAD
21	FLT_21SB_Renfrow_Renfrow_345_138kV	499	-24.1604	0.99883	LEAD

Table B-3: Power Factor Analysis – 2025 Summer

APPENDIX C: REDUCED GENERATION ANALYSIS

Figure C-5: GEN-2013-029 with generators turned off and shunt reactors added to the low side of the substation 345/34.5kV transformer

APPENDIX D: SHORT CIRCUIT ANALYSIS

Table D-1: Short Circuit Currents at GEN-2014-001 POI (Tap on Wichita to Emporia Energy Center) and five levels away

PSS(R)E-32.2.2 ASCC SHORT CIRCUIT CURRENTS

MON, AUG 31 2015 18:19 2014 MDWG PASS 8 WITH 2013 MMWG MDWG 2025S WITH MMWG 2024S

OPTIONS USED:

- FLAT CONDITIONS

- BUS VOLTAGES SET TO 1 PU AT 0 PHASE ANGLE
- GENERATOR P=0, Q=0
- TRANSFOMRER TAP RATIOS=1.0 PU and PHASE ANGLES=0.0
- LINE CHARGING=0.0 IN +/-/0 SEQUENCE
- LOAD=0.0 IN +/- SEQUENCE, CONSIDERED IN ZERO SEQUENCE
- LINE/FIXED/SWITCHED SHUNTS=0.0 AND MAGNETIZING ADMITTANCE=0.0 IN +/-

/0 SEQUENCE

- DC LINES AND FACTS DEVICES BLOCKED
- TRANSFORMER ZERO SEQUENCE IMPEDANCE CORRECTIONS IGNORED

THREE	PHASE	FAULT
/ -		

X	BUS	Х		/I+/	AN(I+)
515543	[RENFROW7	345.00]	AMP	12297.6	-84.86
515476	[HUNTERS7	345.00]	AMP	12302.3	-84.75
515544	[RENFROW4	138.00]	AMP	13826.7	-84.83
515545	[RENFRO11	13.800]	AMP	48731.4	-87.25
532798	[VIOLA 7	345.00]	AMP	13429.7	-85.47
583750	[GEN-2013-029]	345.00]	AMP	10833.3	-84.78
584470	[GEN-2015-003	345.00]	AMP	9186.3	-84.65
514715	[WOODRNG7	345.00]	AMP	16534.7	-84.81
515477	[CHSHLMV7	345.00]	AMP	12285.7	-84.75
515546	[GRANTCO4	138.00]	AMP	6746.7	-81.30
515569	[MDFRDTP4	138.00]	AMP	11548.6	-83.53
520409	[SAND RDG_138]	138.00]	AMP	10092.0	-83.03
532792	[FR2EAST7	345.00]	AMP	6373.0	-85.81
532796	[WICHITA7	345.00]	AMP	24477.8	-86.34
532832	[VIOLA1X1	13.800]	AMP	56039.1	-85.77
533075	[VIOLA 4	138.00]	AMP	20554.1	-85.86
583751	[G13-029XFMR1]	34.500]	AMP	16911.3	-87.56
583754	[G13-029XFMR2]	34.500]	AMP	16759.8	-87.48
584471	[G15-003XFMR1	34.500]	AMP	27755.2	-86.39
514714	[WOODRNG4	138.00]	AMP	17713.0	-83.21
514803	[SOONER 7	345.00]	AMP	22732.0	-86.55
515479	[CHSHMVE1	34.500]	AMP	17532.4	-88.60
515482	[CHSHMVET	13.200]	AMP	37761.2	-88.83
515484	[CHSHMVW1	34.500]	AMP	17755.9	-88.58
515485	[CHSHMVWT	13.200]	AMP	37696.6	-88.83
515497	[MATHWSN7	345.00]	AMP	28563.4	-86.09
515547	[GRANTCO2	69.000]	AMP	7515.8	-80.50
515548	[GRANTC11	13.800]	AMP	7913.2	-84.72
515770	[WOODRNG1	13.800]	AMP	24173.4	-89.28
520205	[WAKITA_138	138.00]	AMP	5513.8	-79.80
532771	[RENO 7	345.00]	AMP	12195.7	-86.28
532791	[BENTON 7	345.00]	AMP	18978.7	-85.77
532795	[FR2WEST7	345.00]	AMP	5131.5	-85.84
532829	[WICH11 1	13.800]	AMP	50360.2	-87.28

532830	[WICH12 1	13.800]	AMP	50540.2	-87.65
532984	[SUMNER 4	138.00]	AMP	9886.9	-82.75
533036	[CLEARWT4	138.00]	AMP	17042.2	-84.85
533040	[EVANS N4	138.00]	AMP	41385.5	-87.22
533046	[GILL S 4	138.00]	AMP	27099.9	-85.12
533127	[F2EAST11	13.800]	AMP	58617.4	-85.48
533128	[F2EAST21	13.800]	AMP	58626.5	-85.51
533131	[FR2ELV11	34.500]	AMP	14238.9	-88.38
533132	[FR2ELV21	34.500]	AMP	14187.9	-88.37
560031	[G15-015-TAP	138.00]	AMP	8474.9	-81.12
560033	[G1524&G1525	T345.00]	AMP	19483.7	-86.44
562476	[G14-001-TAP	345.00]	AMP	10523.5	-85.17
583752	[G13-029-GSU	134.500]	AMP	16184.3	-85.79
583755	[G13-029-GSU	234.500]	AMP	15485.1	-84.90
584472	[G15-003-GSU	134.500]	AMP	27345.7	-85.73
512694	CLEVLND7	345.00]	AMP	14505.1	-86.34
514708	OTTER 4	138.001	AMP	9392.5	-82.44
514709	[FRMNTAP4	138.001	AMP	16396.7	-82.81
514711	[WAUKOTP4	138.001	AMP	14506.3	-81.46
514719	[CLYDE 2	69.0001	AMP	4577.7	-73.45
514733	[MARSHI, 4	138.001	AMP	7690.4	-80.56
514739	[MEDFORD2	69 0001	AMP	5441 1	-76 50
514802	SOONER 4	138 001	AMP	31274 8	-86 85
514806	[SOONER2G	20 0001	AMP	200101 9	-88 66
514880	[NORTWST7	345 001	AMP	29408 3	-86.09
514881	SPRNGCK7	345 001	AMP	21344 6	-85 57
51/001	CIMARON7	345 001	AMD	30018 6	-85 9/
515/07		345.00]	AMP AMD	16407 3	-86 61
515/06	[IAIONGA/	545.00J	AMD	15025 1	-00.01
515/07	[CHSHMVE1-GS	[124.500]	AMP	16005 3	-05.05
515576		245 001	AMP	12002.5	-05.50
515501	[COYOTE 4	120 001	AMP	12903.J	-00.70
515561	[COIVIE 4	12 0001		0343.1 12074 0	-80.59
515760	[SOUNER I	L3.0UU]		43074.9	-07.00
520204	[SANDI_CN_IS	12 0001	AMP	J429.7	-/9./9
52U2U0	[WAKITA_13.8	13.800]	AMP	9093.5	-86.63
521085	[WAKITA Z	69.000]	AMP	5201.1	-80.81
532721	LEEC UI	16.000]	AMP	/8004.3	-88.56
532722	[EEC UZ	24.000]	AMP	113622.5	-88.66
532729	LEVAN SVC	8.0000]	AMP	140300.3	-88.34
532/39	[GILL SVC	8.0000]	AMP	93830.1	-87.89
532768	[EMPEC /	345.00]	AMP	16/89.3	-86.14
532773	[SUMMIT /	345.00]	AMP	10996.2	-86.09
532794	[ROSEHIL/	345.00]	AMP	18273.0	-85.80
532797	[WOLFCRK/	345.00]	AMP	15965.7	-86.82
532807	[RENO 1X1	14.400]	AMP	45066.8	-87.92
532810	[RENO 2X1	14.400]	AMP	44857.8	-87.96
532821	[BENTN1 1	13.800]	AMP	23685.8	-88.68
532822	[BENTN2 1	13.800]	AMP	45086.2	-87.32
532982	[OXFORD 4	138.00]	AMP	9011.7	-82.84
532986	[BENTON 4	138.00]	AMP	28090.6	-85.81
532992	[TIMBJCT4	138.00]	AMP	5610.1	-83.23
533029	[59TH ST4	138.00]	AMP	18582.7	-83.61
533041	[EVANS S4	138.00]	AMP	41385.5	-87.22
533045	[GILL W 4	138.00]	AMP	27099.9	-85.12
533063	[SC10BEL4	138.00]	AMP	9561.3	-81.60
533065	[SG12COL4	138.00]	AMP	22604.1	-85.63
533106	[GILL S 1	13.200]	AMP	17370.8	-89.57
533107	[GILL S 2	13.200]	AMP	17370.8	-89.57
533129	[F2WEST11	13.800]	AMP	53755.9	-85.54

533130	[F2WEST21	13.800]	AMP	53514.5	-85.56
533133	[FR2WLV11	34.500]	AMP	13764.8	-88.31
533134	[FR2WLV21	34.500]	AMP	13743.7	-88.29
533135	[ECLCT1 1	34.500]	AMP	12490.7	-87.16
533136	[ECLCT2 1	34.500]	AMP	12413.9	-87.06
533390	[MAIZEW 4	138.00]	AMP	27643.7	-85.43
533416	[RENO 3	115.00]	AMP	29745.4	-86.45
533795	[GILL E 2	69.000]	AMP	33294.6	-85.25
533796	[GILL W 2	69.000]	AMP	33294.6	-85.25
539675	[MILANTP4	138.00]	AMP	6543.9	-74.95
539801	[THISTLE7	345.00]	AMP	15955.2	-85.90
583850	[GEN-2014-001	L345.00]	AMP	7022.2	-84.93
584570	[GEN-2015-015	5138.001	AMP	5860.3	-81.71
584660	_ [G1524&G1525	345.001	AMP	5107.3	-85.51
584690	[GEN-2015-030	0345.001	AMP	17642.0	-86.00
300138	[4CLEVLND	138.00]	AMP	16442.1	-85.56
509852	[T.NO7	345.001	AMP	23169.9	-86.29
512817	[CLEVLND1	13.8001	AMP	12906.7	-89.63
514703	[FAIRMNT4	138.001	AMP	10521.3	-83.45
514704	[MILLERT4	138.001	AMP	20229.8	-85.65
514707	[PERRY 4	138.001	AMP	10860.7	-83.35
514710	[WAUKOMT4	138 001	AMP	9331 5	-80 31
514713	[WRVALLY4	138 001	AMP	8593 7	-82 20
514731	[SO4TH 4	138 001	AMP	14081 6	-80 73
514736	[4CORNER2	69 0001	AMP	4074 1	-69 64
514740	[NUMAOGE2	69.0001	AMP	4574 9	-73 82
51/757	[UOLWIGORT]	138 001	AMD	9111 1	-79.28
51/700		138 001	AMD	20277 5	-95 63
51/201	[SNREME14	345 001	AME	15961 3	-05.05
51/205	[MINCO /	22 0001	AME	174547 4	-00.10
51400J	CUNERIG	120 001	AMP	16100 6	-00.54
51/070		120.00]	AMD	11551 2	-00.57
51/000		13 0001	AMP	41331.3	-00.57
51/002	[SPGCK1&Z	13.000]	AMP	75457 0	-09.32
D14005	[SPGCK3&4	12.000]	AMP	10407.9	-09.31
514885 E14000		13.800]	AMP	49778.0	-88.33
514898	[CIMARON4	138.00]	AMP	40870.5	-85.08
514908	[ARCADIA7	345.00]	AMP	24976.0	-86.51
514934	[DRAPER /	345.00]	AMP	20968.7	-85.31
5153/5	[WWRDEHV /	345.00]	AMP	20315.5	-86.09
51544/	[MORISN'I'4	138.00]	AMP	13354.0	-83.12
515448	[CRSRDSW/	345.00]	AMP	11575.0	-85.66
515610	[FSHRTAP/	345.00]	AMP	15933.5	-85.16
515621	[OPENSKY/	345.00]	AMP	11583.8	-86.70
515714	[CIMARO11	13.800]	AMP	37456.9	-88.58
515715	[CIMARO21	13.800]	AMP	52150.9	-87.61
515742	[NORTWS21	13.800]	AMP	47926.1	-87.27
515743	[NORTWS31	13.800]	AMP	49778.6	-88.35
520203	[BYRON_138	138.00]	AMP	4171.3	-79.43
520938	[HAZLTNJ2	69.000]	AMP	2712.9	-56.40
521006	[MARSHAL4	138.00]	AMP	7655.0	-80.50
521008	[NASH 2	69.000]	AMP	2652.3	-74.83
532723	[EEC GT1	13.800]	AMP	50278.0	-89.24
532724	[EEC GT2	13.800]	AMP	50314.3	-89.24
532725	[EEC GT3	18.000]	AMP	67672.0	-89.37
532733	[GEC U3	14.400]	AMP	87875.2	-88.12
532734	[GEC U4	14.400]	AMP	70899.1	-88.77
532740	[EMPEC121	13.800]	AMP	60859.4	-89.87
532741	[EMPEC341	13.800]	AMP	60859.4	-89.87
532742	[EMPEC5 1	18.000]	AMP	85198.1	-89.65

532743	[EMPEC6 1 1	8.000]	AMP	85198.1	-89.65
532744	[EMPEC7 1 1	8.000]	AMP	85198.1	-89.65
532751	[WCGS U1 2	25.000]	AMP	207657.6	-88.00
532767	[GEARY 7 3	345.00]	AMP	9844.2	-86.34
532769	[LANG 7 3	845.00]	AMP	16590.9	-86.13
532770	[MORRIS 7 3	845.00]	AMP	12544.6	-85.50
532774	[SWISVAL7 3	845.00]	AMP	16102.0	-85.33
532799	[WAVERLY7 3	845.00]	AMP	14765.1	-86.54
532800	[LATHAMS7 3	845.00]	AMP	10366.9	-85.57
532813	[SUMMIT 1 1	4.400]	AMP	30622.8	-87.12
532826	[ROSEH1 1 1	3.800]	AMP	39167.9	-88.54
532827	[ROSEH5 1 1	3.800]	AMP	38930.1	-88.54
532831	[ROSEH3 1 1	3.800]	AMP	39104.5	-88.54
532873	[SUMMIT 6 2	230.00]	AMP	13611.9	-85.50
532981	[CRESWLN4 1	38.00]	AMP	8031.4	-81.94
532985	[TCROCK 4 1	38.00]	AMP	5251.3	-83.23
532988	[BELAIRE4 1	38.00]	AMP	18633.7	-84.71
532990	[MIDIAN 4 1	38.00]	AMP	10168.1	-80.54
533015	[BENTLEY4 1	38.00]	AMP	12276.6	-84.35
533024	[29TH 4 1	38.00]	AMP	19402.8	-85.03
533035	[CHISHLM4 1	38.00]	AMP	22323.5	-84.73
533039	[ELPASO 4 1	38.00]	AMP	25013.4	-84.13
533042	[FARBER 4 1	38.00]	AMP	15981.2	-83.71
533044	[GILL E 4 1	38.00]	AMP	27099.9	-85.12
533053	[LAKERDG4 1	38.00]	AMP	19016.6	-85.54
533054	[MAIZE 4 1	38.00]	AMP	23253.7	-85.10
533062	[ROSEHIL4 1	38.00]	AMP	30981.0	-86.08
533072	[WACO 4 1	38.00]	AMP	22780.8	-85.04
533074	[45TH ST4 1	38.00]	AMP	28023.7	-85.60
533120	[TIMBJCT1 1	3.200]	AMP	11729.6	-86.23
533137	[WCLCT1 1 3	34.500]	AMP	12262.6	-87.28
533138	[WCLCT2 1 3	34.500]	AMP	12240.5	-87.09
533413	[CIRCLE 3 1	15.00]	AMP	29300.7	-86.57
533415	[DAVIS 3 1	15.00]	AMP	9150.7	-82.79
533429	[MOUNDRG3 1	15.00]	AMP	9751.9	-83.21
533438	[WMCPHER3 1	15.00]	AMP	15912.8	-85.75
533558	[TIMBJCT2 6	59.000]	AMP	8002.0	-83.96
533653	[WOLFCRK2 6	59.000]	AMP	5909.2	-87.21
533798	[GILLJCT2 6	59.000]	AMP	21783.4	-81.90
533804	[HAYSVLJ2 6	59.000]	AMP	14204.8	-78.17
533812	[LIN 2 6	59.000]	AMP	9690.2	-83.50
533813	[MACARTH2 6	59.000]	AMP	22518.2	-80.86
533830	[PECK 2 6	59.000]	AMP	6510.7	-83.84
533850	[BASICCH2 6	59.000]	AMP	20318.2	-84.25
539668	[HARPER 4 1	.38.00]	AMP	5559.3	-78.95
539676	[MILAN 4 1	.38.00]	AMP	3505.7	-70.42
539800	[CLARKCOUNTY73	345.00]	AMP	12540.9	-85.60
539802	[THISTLE T1 1	3.800]	AMP	8114.7	-88.41
539804	[THISTLE4 1	.38.00]	AMP	16476.0	-86.34
539805	[ELMCREEK7 3	345.00]	AMP	5724.1	-85.76
562075	[G11-051-TAP 3	345.00]	AMP	16704.5	-86.42
579253	[G07-21&14-023	345.00]	AMP	13579.9	-86.37
579268	[G07-44&14-033	845.00]	AMP	9129.7	-85.26
583490	[GEN-2012-0413	845.00]	AMP	11414.7	-86.55
583851	[G14-001XFMR13	34.500]	AMP	12913.5	-87.73
583854	[G14-001XFMR23	34.500]	AMP	12853.8	-87.64
583990	[GEN-2014-0493	345.00]	AMP	7874.9	-85.26
584170	[GEN-2014-0641	.38.00]	AMP	9322.5	-82.41

-86.70

584450 [GEN-2015-001345.00] AMP 12903.5

584571	[G15-015XFMR134.500]	AMP	13384.8	-85.99
584661	[G1524&1525X134.500]	AMP	34351.5	-87.15
584691	[G15-030XFMR134.500]	AMP	25942.6	-88.40
584700	[GEN-2015-029345.00]	AMP	9771.0	-84.60